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Abstract— Forced vibrations of the system consisting of a 
viscoelastic plate-layer and a half-plane filled with a 
compressible viscous fluid are studied. The plane-strain state 
is considered in the case where the lineally-located time-
harmonic forces act on the free face plane of the plate, and it is 
assumed that the mechanical relations for the plate-layer 
material are described through the Rabotnov fractional 
exponential operators. The motion of the plate is written by 
utilizing 2D exact equations of the theory of visco-elasto-
dynamics, but the motion of the compressible viscous fluid is 
described by the linearized Navier-Stokes equations. It is 
assumed that the velocities and forces of the constituents are 
continuous on the contact plane between the plate and fluid. 
The dimensionless parameters which characterize the creep 
time and the long-term values of the elastic constants of the 
plate material are introduced. Moreover, the dimensionless 
parameters which characterize the compressibility and 
viscosity of the fluid are introduced as well. The 
corresponding boundary-value and contact problems which are 
obtained after employing the dynamical correspondence 
principle to the equations and relationships related to the plate 
are solved by applying the Fourier transformation with respect 
to the coordinate directed along the interface line. The inverse 
of this transformation is determined numerically. Numerical 
results on the interface stresses and velocities, and the 
influence of the foregoing dimensionless rheological 
parameters on these results are presented and discussed. 

 

I. INTRODUCTION 
Investigations of problems related to the dynamics of plate-
fluid interaction have great significance in the theoretical and 
application sense in aerospace, nuclear, naval, chemical and 
biological engineering. The first attempt in this field was made 
in [1], wherein vibrations of a circular elastic “baffled” plate in 
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contact with still water were considered. It was assumed that 
this plate is clamped all around and placed in a matching 
circular aperture within an infinite rigid plane wall. The 
investigations were made by the use of the so-called “non-
dimensional added virtual mass incremental” (NAVMI) 
method, according to which it is assumed that the modes of 
vibrations of the plate in contact with still water are the same 
as those in a vacuum, and the natural frequency is determined 
by the use of the Rayleigh quotient. In this case it is supposed 
that the squares of the natural frequencies of the plate are 
equal to the ratio between the maximum potential energy of 
the plate and the sum of the kinetic energies of both the plate 
and the fluid. Later this method was employed in many related 
investigations such as in papers [2]-[4] and in many others 
listed in these papers. Up to now it has also been used in 
investigations carried out without employing the NAVMI 
method. For instance, in a paper [5] the vibration and stability 
of the rectangular plate immersed in axial liquid flow was 
studied without employing the NAVMI method and the 
Galerkin method was applied to determine the expression of 
the flow perturbation potential. Then the Rayleigh-Ritz method 
was used to discretize the system. 
     Investigations carried out in [6] and other papers listed 
therein were also made without employing the NAVMI 
method. Note that in this paper the forced bending vibration of 
an infinite plate in contact with compressible (acoustic) 
inviscid fluid, where this fluid occupies a half-plane (half-
space), was considered. This paper gives asymptotic analyses 
of the sound and vibration in the metal plate and compressible 
inviscid fluid system.   
     The other aspect of investigations related to the plate-fluid 
interaction regards wave propagation problems. Investigations 
carried out in [7] and other papers listed therein can be taken 
as examples. It should be noted that before the appearance of 
[7], the problems of time harmonic linear wave propagation in 
elastic structure-fluid systems were investigated within the 
framework of the theory of compressible inviscid fluid. A list 
of these studies and a review could be found in [7]. At the 
same time, the role of fluid viscosity in wave propagation in 
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the plate-fluid system was first investigated in [7]. However, in 
this paper and all the papers indicated above, the equations of 
motion of the plate were written within the scope of the 
approximate plate theories by the use of various types of 
hypotheses such as the Kirchhoff hypotheses for plates. 
Consequently, the use of the approximate plate theories in 
these investigations decreases significantly the analyzed range 
of wave modes and their corresponding dispersion curves. It is 
evident that in many cases (for instance, in the cases where the 
wave length is less significant than the thickness of the plate) 
more accurate results in the qualitative and quantitative sense 
can be obtained by employing the exact equations for 
describing the plate motion. Moreover, in the foregoing 
investigations (except [4]) the initial strains (or stresses) in 
plates, which can be one of their characteristic particularities, 
are not taken into account. These two characteristics, namely, 
the use of the exact equations of plate motion and the existence 
of initial stresses in the plate, are taken into consideration in 
[8] and other papers, a review of which is given in [9]. Note 
that in these papers, in studying wave propagation in pre-
stressed plate + compressible viscous fluid systems, the motion 
of the plate was written within the scope of the so-called three-
dimensional linearized theory of elastic waves in initially 
stressed bodies. However, the motion of the viscous fluid was 
written within the scope of the linearized Navier-Stokes 
equations. Detailed consideration of related results was made 
in [10].   
     However, up to recent days, within this framework, there 
has not been any investigation related to the forced vibration 
of the pre-strained plate + compressible viscous fluid system. 
The first attempt in this field was made in [11], wherein the 
two-dimensional (plane-strain state) problem on the forced 
vibration of the pre-strained metal plate + compressible 
viscous fluid system, was studied. The motion of the plate is 
described by utilizing the three-dimensional linearized 
equations of the wave propagation in pre-stressed bodies and 
the motion of the fluid by utilizing linearized Navier-Stokes 
equations. Numerical results on the velocity distributions on 
the plate-fluid interface and the influence of the problem 
parameters and the frequency of the external force on these 
distributions are presented and discussed.  
    Nowadays polymer composite materials are intensively used 
in various branches of the modern industry related to the 
building of boats, ships, offshore structures, etc., when the 
fluid-structure interaction should be taken into account. 
However, all the foregoing investigations, as well as the 
studies carried out in [11], were focused on the interaction 
between a metal elastic plate and fluid, and therefore, in 
general, cannot be employed for understanding the behavior of 
the interaction between the polymer plate and fluid. 

    Consequently, investigation of problems related to the 
interaction between the plate type structure made of polymer 
materials and fluids may be interesting not only in the 
theoretical sense, but also in the practical sense in 
abovementioned branches of the modern industry.  
     In mainly, there are two moments which distinguish the 
interaction between a fluid and a plate made of polymer 
materials from the interaction between a fluid and a metal 
elastic plate. The first of them is the ratio of densities of the 
plate material and fluids, so as usual, the density of the 
polymers is not more than the density of fluids, but the density 
of the metals elastic material is greater significantly than that 
of the fluids. The second point relates to the time-dependent 
character of the mechanical properties of the polymer 
materials which are modeled through the well-known 
operators, the consideration of which can be found in the well-
known monograph by Rabotnov [12]. However, up to know 
there is not any investigation related to the interaction between 
the plate made of linear viscoelastic material and fluids.  
    In the present paper, the attempt is made in this field and the 
problem related to the forced vibration of the system 
consisting of the plate made of a linear viscoelastic material 
and compressible viscous fluid is investigated. The plane-
strain state in the plate is considered, and it is assumed that the 
viscoelasticity of the plate material is described through the 
Rabotnov fractional exponential operators [12].  In other 
words, in the present work, the analysis carried out in [11] is 
generalized for the case when the plate material is viscoelastic 
one.   
    Note that the corresponding problems related to pre-stressed 
elastic plate + elastic half-space systems were studied in [13]–
[19], but the problem related to the system involving  
viscoelastic plate + viscoelastic half-space was studied in [20].  

  
II. MATEMATICAL FORMULATION OF THE PROBLEM 

 
   Consider a system consisting of a plate-layer made of 
viscoelastic material and a half-space filled by compressible 
viscous fluid. We associate the coordinate system 1 2 3Ox x x  
(Fig. 1), and we will determine the position of the points of the 
constituents in this coordinate system. Assume that the plate 
thickness is h , and this plate occupies the region 
{ 1 ,x < ∞ 2 0,h x− < < }3x < ∞ , but the fluid occupies the 

region { 1 ,x < ∞ 2 ,x h−∞ < < − }3x < ∞ . Moreover, assume 
that the lineal-located normal time-harmonic force acts on the 
plate’s free face plane, and the distribution of this force with 
respect to the coordinate 3x  is homogeneous. Consequently, 
the plane-strain state occurs in the 1 2Ox x plane.  
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Fig. 1 The sketch of the plate + fluid system   

 
  Thus, within this we investigate the motion of the foregoing 
system. For this purpose, we write the equation of motion and 
other field equations for the plate. 
 Equation of motion: 
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   Constitutive relations: 
  * *

11 112σ λ ε µ ε= + , * *
22 222σ λ ε µ ε= + ,  

*
12 122σ µ ε= ,                     (2) 

where *λ  and *µ  are the following operators: 

 
*

0 1
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µ µµ

       = + −     
    

∫  .          (3)       

 
    In equation (3), 0λ  and 0µ are the instantaneous values of 
Lame’s constants as 0t → , 1( )tλ  and 1( )tµ  are the 
corresponding kernel functions for describing the hereditary 
properties of the material of the plate.  
 Strain-displacement relations: 
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    Equations (1) – (4) are the complete system of equations of 
the theory viscoelasticity for isotropic bodies, and notation 
used in these equations is conventional.  
    According to [10], we consider the equations of motion of 
the Newtonian compressible viscous fluid: the density, 
viscosity constants and pressure of which are denoted by the 
upper index (1). Thus, we write the equation of motion and 
other field equations for the fluid. 
   Linearized Navier-Stokes equations for the fluid are: 
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 Equation of continuity is: 
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 Constitutive relations are 

 
   (1) (1) (1)

11 11( ) 2T p e eλ µ= − + + , 
(1) (1) (1)

22 22( ) 2T p e eλ µ= − + + , (1)
12 122T eµ= ,                 (7) 

 
  Deformation rate and velocity relations are: 
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  State equation is 

                             
(1)

2
0 (1)
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ρ

∂
=

∂
.                                     (9)  

  In equations (5) and (6), (1)
0ρ  is the fluid density before 

perturbation and  

                                
2 2

2 2
1 2x x

∂ ∂
∆ = +
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.                                   (10) 

   The other notation in (5) – (9) is conventional.  
 According to [10], the solution of (5)-(10) is reduced to 
finding the two potentials ϕ  and ψ , which are determined 
from the following equations: 

   
(1) (1) 2

(1) 2 22
00 0

2 11 0
a ta

λ µ ϕ
ρ

  + ∂  + ∆ − =
  ∂  

,  

                          (1) 0
t

ν ψ∂ ∆ − = ∂ 
,                                   (11) 

where (1)ν  is the kinematic viscosity, i.e., (1)(1) (1)
0/ν µ ρ= .  

   The velocities 1v , 2v and the pressure (1)p  are expressed in 
terms of the potentials ϕ  and ψ  via the following 
expressions: 
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   Supposing that (1)
11 22 33( T ) / 3p T T= − + + , we obtain  

                     (1) (1)2
3

λ µ= −                (13) 

   It is assumed that  
 

           0iv → , 0i jv x∂ ∂ → , , 1,2i j = as 2x → −∞        (14) 

and there are no waves reflected from 2x = −∞ . 
    Moreover, it is assumed that the following boundary and 
contact conditions are satisfied: 
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        2 221 21x h x hTσ =− =−= ,
2 222 22x h x hTσ =− =−= .          (15) 

 
   This completes the formulation of the problem.  
 

III. SOLUTION METHOD 
    First, we represent the displacements and the components of 
the strain tensor related to the plate, and the velocities and  
components of the strain rate tensor related to the fluid as  
 

1 2 1 2( , , ) ( , ) i t
k ku x x t u x x e ω= , 1 2 1 2( , , ) ( , ) i t

kn knx x t x x e ωε ε= , 

1 2 1 2( , , ) ( , ) i tx x t x x e ωε ε= , ; 1, 2k n =  

 1 2 1 2( , , ) ( , ) i t
k kv x x t v x x e ω=  , 1 2 1 2( , , ) ( , ) i t

kn kne x x t e x x e ω= , 

                    1 2 1 2( , , ) ( , ) i te x x t e x x e ω= ,                             (16)   
 
   Below we will omit the over bar on the amplitudes of the 
sought values. Moreover, we use the relation  

   1 2 1 2
0

( ) ( ) ( ) ( )
t t

f t f d f t f dτ τ τ τ τ τ
−∞

− ≈ −∫ ∫         (17) 

in (2) and (3). Thus, considering (16) and (17) in (2) and (3), 
we write  
          0 1 2 0 1 2( , ) 2 ( , )n i t i t

kn k knx x e x x eω ωσ λ ε δ µ ε= +  

  1 2 1( , ) ( )
t

n i
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t

i
kn x x t e dωτε µ τ τ

−∞

+ −∫ ,                       (18) 

where n
kδ  is a Kronecker symbol.  

   Using the transformation t sτ− = , we can made the 
following manipulations of the integrals which enter into (18): 
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In a similar manner, we obtain  
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                         1 1( ( ) ( ))i t
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where  
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∞
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( ) ( )sin( )s s s dsµ ω µ ω
∞

= ∫ . (22)                   

   Thus, we obtain the complex elastic constants, the real and 
imaginary parts of which are determined through expressions 

(20) and (22). Considering (19) – (22), we can write the 
following expressions for the stresses in the plate: 
                         

        ( )1 2 1 2( ) ( , ) 2 ( ) ( , )n i t
kn k knx x M x x e ωσ Λ ω ε δ ω ε= + ,     (23) 

where  
                  0 1 1( ) ( ) ( )c siΛ ω λ λ ω λ ω= + − ,   
                  0 1 1( ) ( ) ( )c sM iω µ µ ω µ ω= + − .                       (24)  
 
    Thus, we obtain the relations (23) and (24) instead of (2) 
and (3). This means that the complete system of field 
equations (1), (4), (23) and (24) for the viscoelastic plate can 
also be obtained from the field equations written for the purely 
elastic system by replacing the elastic constants 0λ  and 

0µ with the complex constants ( )Λ ω  and ( )M ω , respectively. 
In other words, the foregoing mathematical calculation 
confirms the dynamic correspondence principle [21] for the 
problem under consideration, and the solution method used 
here coincides with this principle.  
    Note that the real parts of the complex constants, i.e., 
Re ( )Λ ω  and Re ( )M ω , are called the storage moduli, while 
the imaginary parts, i.e., Im ( )Λ ω  and Im ( ) M ω , are called 
the loss moduli. The ratios Im ( ) Re ( )Λ ω Λ ω  and 
Im ( ) / Re ( ) M Mω ω  determine the phase shifting between the 
strains and stresses. A more detailed explanation of the 
mechanical meaning of these ratios can be given under the 
selection of concrete viscoelastic operators, what will be made 
in the next section.  
    Now we turn to the consideration of the determination of the 
amplitudes of the sought values. For this purpose we substitute 
(16) and (23) into the corresponding equations and relations, 
and replace the derivatives ( ) t∂ • ∂ and 2 2( ) t∂ • ∂ with ( )iω •  

and 2 ( )ω− • , respectively. We obtain the corresponding 
equations, boundary and contact conditions for the mentioned 
amplitudes. We employ the exponential Fourier transformation 
to these equations with respect to the 1x coordinate 

        12 1 2 1(s, ) ( , ) isx
Ff x f x x e dx
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= ∫ .                    (25)  

   Considering the problem symmetry with respect to 1 0x = , 
the originals of the sought values could be represented as 
follows 
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    First, we consider the solution of the equations related to the 
Fourier transformation of the quantities for the plate-layer, i.e., 
the solution of the equations which are obtained from (26), 
(23), 24), (16), (4), and (1). Thus, substituting (26) in (23), 
(24), (16), (4) and (1), and doing some mathematical 
manipulations, we obtain the following equations with respect 
to the 1Fu and 2Fu : 
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where   
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   Introducing the notation 
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we can write the solution of (27) as follows 
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where 
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    Using (30), (4) and (23), we also write expressions for the 
Fourier transformations 12Fσ and  22Fσ  of the corresponding 
stresses which enter the boundary and contact condition (15) 
 

( ) ( )1 2 1 212 1 1 1 2 1 2( ) ( )k x k x
F Z M k a s e Z M k a s eσ ω ω −= − + − −  

       ( ) ( )2 2 4 22 2 3 4 2 2( ) ( )k x k xZ M k a s e Z M k a s eω ω −+ − + − − , 

( ) 1 222 1 1 1( ) ( ( ) 2 ( )) k x
F Z s a k M eσ Λ ω Λ ω ω= + +  

          ( ) 1 22 2 1( ) ( ( ) 2 ( )) k xZ s a k M eΛ ω Λ ω ω −+ − +  

          ( ) 2 23 3 2( ) ( ( ) 2 ( )) k xZ s a k M eΛ ω Λ ω ω+ + +  

           ( ) 2 24 4 2( ) ( ( ) 2 ( )) k xZ s a k M eΛ ω Λ ω ω −+ − + .          (32) 
 
   This completes the consideration of the Fourier 
transformation of the values related to the plate-layer. Now we 
consider the determination of the Fourier transformations of 
the quantities related to the fluid flow. First, we consider the 
determination of  Fϕ  and Fψ from the Fourier transformation 
of the equations in (11), which taking the relations (13) and  
 
         2

F Fhϕ ω ϕ=  ,  2
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into account could be written as follows 
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 ,                     (34) 

where  

             1
0

h
a
ωΩ = , 

2
2

(1)w
hN ω

ν
= .              (35) 

 
    The dimensionless number wN  in (35) can be taken as 
Womersley number and characterizes the influence of the fluid 
viscosity on the mechanical behavior of the system under 
consideration.  For purely hydrodynamic problems, when the 
Womersley number is large (around 10 or greater), it shows 
that the flow is dominated by oscillatory inertial forces. When 
the Womersley number is low, viscous forces tend to dominate 
the flow. However, for hydro-elastodynamic problems the 
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mentioned “large” and “low” limits for the Womersley number 
can change significantly.  
   The dimensionless frequency 1Ω  in (35) can be taken as the 
parameter which characterizes the compressibility of the fluid 
on the mechanical behavior of the system under consideration.  
Thus, taking the condition (14) into consideration, the 
solutions to the equations in (34) are found as follows 
 
                        1 25

x
F Z eδϕ = , 1 26

x
F Z eγψ = ,                   (36) 

where 
 

        
( )

2
2 1

1 2 2
11 4 3 w

s
i N

Ω
δ

Ω
= −

+
,  2 2

1 ws iNγ = +  .       (37) 

 
   Using (36) and (37) we obtain the following expressions for 
the Fourier transformations of the velocities, pressure and 
stresses of the fluid from the Fourier transformations of (5) – 
(12): 

              1 2 1 21 5 6
x x

Fv h Z se Z eδ γω  = − +  , 

              1 2 1 22 5 1 6
x x

Fv h Z e Z seδ γω δ = −  , 

              1 2(1) 2 2
22 5 1 0

4 2
3 3

x
FT Z s R eδµ ω δ  = + −   

 

                       1 26 1 1
2
3

xZ s s eγγ γ  + − −    
, 

      ( )1 2 1 2(1) 2 2
21 5 1 6 1

x x
FT Z s e Z s eδ γµ ω δ γ = + +  

, 

                1 2(1) (1)
0 5

x
Fp R Z eδµ ω= ,                                      (38) 

 
where 

       
2

21
0 2 2

1

4
3 1 4 (3 )

w
w

R iN
i N

Ω
Ω

= − −
+

.                   (39)  

 
   Substituting (30), (32), and (38) into the boundary and 
contact conditions (15), we obtain a set of equations with 
respect to the unknowns 1Z , 2Z , …, 6Z , in terms of which 
the sought values are determined. The mentioned equations 
can be expressed as follows 
 
  ( )

2
12 0 1 11 2 12 3 13 4 140

0F x
Z Z Z Zσ µ α α α α

=
= + + + = , 

( )
2

22 0 1 21 2 22 3 23 4 24 0 00
/F x

Z Z Z Z Pσ µ α α α α µ
=

= + + + = − , 

  
2

2

1
1 1 31 2 32 3 33(F
F x h

x h

u v i Z Z Z
t

ω α α α=−
=−

∂
− = + +

∂
 

                                    4 34 5 35 6 36) ( ) 0Z h Z Zα ω α α+ − + = , 

 
2

2

2
2 1 41 2 42 3 43(F

F x h
x h

u v i Z Z Z
t

ω α α α=−
=−

∂
− = + +

∂
 

                                   4 44 5 45 6 46) ( ) 0Z h Z Zα ω α α+ − + = , 

( ) ( )
2 2

21 0 21 0 1 51 2 52 3 53x h x h
T Z Z Zσ µ µ α α α

=− =−
− = + +

 

                                   4 54 5 55 6 56) ( ) 0Z M Z Zµα α α+ − + = , 

( ) ( )
2 2

22 0 22 0 1 61 2 62 3 63x h x h
T Z Z Zσ µ µ α α α

=− =−
− = + +

 
                               4 64 5 65 6 66) ( ) 0Z M Z Zµα α α+ − + = ,   (40) 
where 

                        
(1)

0
M µ

µ ω
µ

= .                               (41) 

    The expressıons for coeffıcıents nmα   ( ; 1, 2,...,6)n m =  can 
be easily determined from (30), (32), and (38), and therefore 
we do not present they here. Thus, unknowns 1Z , 2Z ,…, 6Z  in 
(40) can be determined via the formulae 

                
det

det

k
nm

k k
nm

Z
β

α
= .                                    (42) 

   Note that the matrix ( )k
nmβ is obtained from the matrix 

( )nmα by replacing the k th−  column of the latter by the 

column 0 0(0, ,0,0,0,0)TP µ− .  
   Now we consider the calculation of the integrals in (26). For 
this purpose, firstly we consider the following reasoning. If we 
take the Fourier transformation parameter s as the 
wavenumber, then equation  
 
                      det 0nmα = ,    , 1,2,...,6n m =               (43) 
 
coincides with the dispersion equation of the waves 
propagated in the direction of the 1Ox axis in the system under 
consideration. It should be noted that, according to the well-
known physical-and-mechanical considerations, equation (43) 
must have complex roots only. This character of the roots is 
caused by the viscoelasticity of the plate material and by the 
viscosity of the fluid. In other words, the integrated functions 
in (26) have not any singular points, and therefore these 
integrals can be calculated by the use of the well-known usual 
numerical calculation algorithm.    
 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

A.  Selection of the viscoelastic operators and complex 
constants 

Assume that the viscoelasticity of the plate material is 
described via the Rabotnov fractional exponential operator 
[12], i.e., we propose that  

 

* *0 0
0

0 0

3 3
( ) ( ) ( )

2(1 ) 2(1 )
t t R tα

β β
µ η µ η β η

ν ν ∞
  

= − − −  + +   
 , 

* *0 0 0
0

0 0 0

(1 2 ) 3
( ) ( ) ( )

2(1 ) 2(1 )
t t R tα

ν β β
λ η λ η β η

ν ν ν ∞
  −

= + − −  + +   
, 

( )* *
0 0 0( ) ( ) ( )E t E t R tαη η β β β η∞ = − − −  ,  
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( )* *0
0 0 0

0

1 2
( ) ( ) ( )

2
t t R tα

ν
ν η ν η β β β η

ν ∞
 −

= + − − 
 

,         (44)  

where 

  *

0
( ) ( ) ( , ) ( )

t
R x t R x t dα αη τ η τ τ= −∫ ,  

      

(1 )

0
( , )

((1 )(1 ))

n n

n

x tR x t t
n

α
α

α Γ α

−∞
−

=
=

+ −∑  ,       0 1α≤ < .      (45) 

 
In (45), ( )xΓ  is a gamma-function. 
   Note that the Rabotnov fractional exponential operators (45) 
allow us to describe the initial parts of the experimentally and 
theoretically constructed creep and relaxation graphs with the 
required accuracy. These operators also allow us to determine 
with very high accuracy the asymptotic values of these graphs. 
Operators in (44) and (45) are employed successfully to 
describe various polymer materials and epoxy-based 
composites with continuous fibers or layers. The values of the 
rheological parameters in (44) were determined for these 
materials in [12]. Moreover, these operators have many simple 
rules for complicated mathematical transformations, for 
example, the Laplace transformation and Fourier 
transformations which also will be used below in the present 
investigation. Note that utilizing these operators during the 
investigation of the stability loss and buckling delamination 
problems related to the viscoelastic composite materials was 
also considered in [22] and [23].  
    It follows from (44) that  
 

       * *
0 0

2 2( ) ( )
3 3

t tλ µ η λ µ η   + = +   
   

.          (46)  

     
    As 0 0( 2 3)λ µ+  is the modulus of volume expansion 
(denote it by 0K ), we can conclude that the selection of the 
operators in (44) corresponds to the case where the volumetric 
expansion of the materials of the plate is purely elastic. In 
other words, the constitutive relation in (2) can be rewritten as 
 
        0( ) ( )t K tσ ε= ,         *

11 112 ( 3)σ σ µ ε ε− = − , 

        *
22 222 ( 3)σ σ µ ε ε− = − ,    *

12 122σ µ ε= ,               (47) 
 
where 11σ σ− , 22σ σ− , and 12σ  are components of the 
deviatoric stresses, 11 3ε ε− , 22 3ε ε− , and 12ε  are 
components of the deviatoric strains, and 11 22σ σ σ= + .    
   Thus, it follows from (47) that in the case under 
consideration, the operator *µ is sufficient to describe the 
viscoelasticity of the plate material. In (44) and (45),α , 0β , 
and β ∞  are the rheological parameters of the plate material.  
    For explanation of the mechanical meaning of these 
parameters, following Rabotnov [12], we consider some 
properties of the operator (45). For this purpose, we note that 
the operator *Rα  (45) can also be determined as 

*
*

*( )
1

I
R x

xI
α

α
α

=
−

  or 

                                   

*
*

11 ( )
1

xR x
xI

α
α

+ =
−

,                       (48)  

where  

*

0
( ) ( ) ( )

t
I t I t dα αη τ η τ τ= −∫  , ( )

(1 )
tI t

α

α Γ α

−
=

+
 , 0 1α≤ <   (49)                                

 
     According to (48), the operator * ( )R xα is called in [12] as 

the resolvent operator emitted with the operator * ( )I xα .  

      The Laplace transformation 
0

( ) ( ) ptf p f t e dt
∞

−= ∫  of the 

functions ( , )R x tα  (45) and    1
0

( , ) ( , )R x t R x t dα α τ τ
∞

= −∫  is  

1
1( , )R x p

p x
α α−

=
−

, 

                                 
1 1

1( , )
( )

R x p
p p x

α α−
=

−
.                 (50) 

 
    Under small values of time t, the first term in the series (45) 
is the dominant term, and therefore for the cases, where 0t → , 
it could be written that  
 
                           ( , ) ( )R x t I tα α≈ .                          (51) 
 
   Moreover, it follows from (50) that in the case when t → ∞ , 
it could be written that  

          1
0

1( , ) ( , )R x t R x t d
xα α τ τ

∞

= − → −∫ .               (52) 

   Thus, taking (44)-(52) into account, we can conclude that the 
dimensionless rheological parameter α characterizes the 
mechanical behavior of the viscoelastic material around the 
initial state of the deformation, i.e., in the vicinity of 0t = . 
Moreover, we can conclude that the dimension of the 
rheological parameter β∞  coincides with the dimension of the 

rheological parameter 0β  and is proportional to 1Tα − , where 
T is the time dimension. At the same time, according to (44) - 
(52), we obtain the following expressions: 
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1 2
lim 1 1
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         * 0
0

0

1 2
lim 1 1

2 (1 )t d
ν

ν ν ν
ν∞

→∞

 −
= = + + 

,                            (53) 

 
which characterize the long-term values of the mechanical 
constants. In (53), the notation 
 
                                   0d β β∞=                                 (54) 
 
is used. It follows from (53) and (54) that the ratio of the 
rheological parameters β∞  and 0β , i.e., the 
ratio 0 ( )dβ β∞ = , characterizes the long-term values of the 
elastic constants.  
 The foregoing discussion shows that the expression 
 

        
1

1( )Rt αβ
−
+

∞= and  

1
1

0
0

3
2(1 )Ct

α
β β

ν

−
+

∞
 

= + + 
      

 
could be taken as the characteristic relaxation time (denoted as 

Rt ) and characteristic creep time (denoted by Ct ), 
respectively. According to (54), it follows that R Ct t>  and  

1
1

0

3 1
2(1 )R Ct t

d
α

ν
+ 

= + + 
. 

    Now we turn to consideration of the expressions for cµ  and 

sµ . Considering (22) and (44), these expressions can be 
written as  
 

1

0 01
0 0

3 31 ( , )
2(1 ) 2(1 )c cd Rαµ µ β β ω

ν ν

−

∞

   = − + − − + +   
, 

 

1

0 01
0 0

3 3 ( , )
2(1 ) 2(1 )s sd Rαµ µ β β ω

ν ν

−

∞
 

= − + − − + + 
, (55) 

where  

                       0
01

0

3
2(1 )

ββ
ν

=
+

.                                 (56) 

 
    We recall that the ratio s cµ µ is the loss tangent, i.e., 
tan s cθ µ µ= , where the angle θ  can be interpreted as 
providing the phase angle by which the deviatoric strain lags 
behind the deviatoric stress in steady-state harmonic 
oscillation in the viscoelastic materials under consideration. 
Substituting ( )iω  for d  in the Laplace transformation (50) of 
the core function (45) of the fractional exponential operator 
(44) and, following [12], doing some mathematical 
manipulations, we obtain 

2

01
2

sin
2( , )

2 sin 1
2

cRα

παξ ξ
β β ω

παξ ξ
∞

+
− − =

+ +
,   

                 01
2

cos
2( , )

2 sin 1
2

sRα

παξ
β β ω

παξ ξ
∞− − =

+ +
,           (57) 

and 

               ( ) 1QX αξ −= , 2
1

101( )

cQ

hαβ β −
∞

=

+

,                (58) 

 
where X  and 2c  are determined by (28). 
   According to the foregoing discussion on the dimensions of 
the rheological parameters β∞ and 0β , we can conclude that 
Q  and  ξ  (58) entering in (57) are dimensionless parameters.         
    Consider the mechanical sense of the parameter Q . It is 
evident from (54) and (58) that  
 
                                        2CQ t c h= ,                                (59) 
 
whence it follows that for fixed 2c h  the increase (decrease) 
in the values of Q results in the increase (decrease) in the 
values of the characteristic creep time Ct . Therefore, we call 
the parameter Q as the dimensionless characteristic creep 
time.  
    Let us call, conditionally, the ratio Ch t (denoted by cc ) as 
the “creep velocity” of the plate material. Then, the parameter 
Q can also be estimated as the ratio of the shear wave velocity 

2c  in the corresponding purely elastic material to the “creep 
velocity” cc  of the plate material. Consequently, for fixed 
values of 2c , the increase in the values of the dimensionless 
parameter 2( )cQ c c=  corresponds to the decrease in the 
“creep velocity” cc  of the plate material. 
    As noted above, the dimensionless rheological parameter 
d (54) entering in (53) and (55) characterizes the long-term 
values of the mechanical properties, i.e., the values of λ∞ , µ∞ , 
E∞ , and ν∞  are determined by (53), in so doing 0λ λ∞ > , 

0µ µ∞ < , 0E E∞ < , and 0ν ν∞ > . Nevertheless, the 
magnitudes of λ∞ and ν∞  decrease, but the magnitudes of 
µ∞ and E∞ increase with d . At the same time, according to 
(53), we can write that 0 0( ) / (1 )d E E E E∞ ∞= −  from which 
it follows that d → ∞ as 0 1E E∞ → , and 0d →  as 

0 0E E∞ → . 
     To be more precise, the long-term values of the mechanical 
properties approach their corresponding instantaneous values 
at 0t =  with the parameter d . In other words, the relations 
 

0λ λ∞ → ,    0µ µ∞ → ,   0E E∞ → ,   0ν ν∞ → ,   0cλ λ→ , 
   0cµ µ→ ,     0sλ → ,      0sµ →    as   d → ∞               (59) 
 
take place. Consequently, in the cases where 1d  , the forced 
vibration of the considered system must be very close to those 
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of the corresponding system consisting of the purely elastic 
plate and compressible viscous fluid. Taking these discussions 
into account, we can conclude that the increase (decrease) in 
the values of the dimensionless parameter d  results in the 
increase (decrease) in the long-term values of the elastic 
constants, for instance, in the values of E∞ . Moreover, it 
follows from the expression of the dimensionless parameter  

1( )QX αξ −=  that  
 
 atξ → ∞ :  01( , ) 1cRα β β ω∞− − → , 

                   01( , ) 0sRα β β ω∞− − →    as  ( ) 0QX → ,      (60) 
 
at 0ξ → :  01( , ) 0cRα β β ω∞− − → , 
                  01( , ) 0sRα β β ω∞− − →     as ( )QX → ∞ .      (61) 
 
  The relation (60) means that in the cases where ( ) 1QX  , the 
behavior of the considered plate-layer is very close to that of a 
purely elastic plate-layer with long-term values of the elastic 
constants. As well, the relation (61) means that in the cases 
where ( ) 1QX  , the behavior of the plate-layer is very close 
to that of the corresponding purely elastic system with 
instantaneous values of the elastic constants at 0t = .  
  So, the influence of the viscoelasticity of the plate material on 
the frequency response (i.e., the external force dependence of 
the amplitudes of the fluid velocities, stresses and frequency 
ω ) can be characterized via the parameters Q  (the 
dimensionless creep time) and d (through which the long-term 
values of the mechanical constants are determined). In this 
case, the increase in the values of the parameters Q  and d  
will correspond to the decrease in the viscous part of the 
viscoelastic deformations of the plate. According to expression 
Q given in (58), the influence of the rheological parameter α  
on the viscous part of the deformations can be taken into 
account with the help of the parameter Q .    

B.  Numerical results and their analysis 
 
According to the discussions made in the previous section, the 
numerical results are obtained by evaluating of the integrals  
{ }22 11 2 22 11 2, , , , ,u T T vσ σ

 
[ ]22 11 2 22 11 2 1

0

1 Re , , , , , cos(s )i t
F F F F F Fe u T T v x dsω σ σ

π

∞  =  
  

∫ ,  

{ }12 1 12 1, , ,u T vσ  

  [ ]12 1 12 1 1
0

1 Re , , , sin(s )i t
F F F Fe u T v x dsω σ

π

∞  =  
  

∫ .            

(62) 
   Note that during calculations the improper integrals (62) are 
replaced by the corresponding definite integrals, i.e., it is 
assumed that  

                              

*
1

0 0

( ) ( )
S

ds ds
∞

• ≈ •∫ ∫ .                              (63) 

    The values of  *
1S  in (63) are determined from the 

convergence criteria of the improper integrals. In the present 
calculation procedure, it is established that the difference 
between the numerical results obtained for *

1 100S =  and 
*
1 100S >  is not greater than 610− . Therefore, all numerical 

results, which will be discussed below, are obtained for the 
case where *

1 100S = .  Under numerical evaluations, the 

integrated interval *
10, S 

   is divided into a certain number of 

shorter intervals, and for each of them the Gauss integrating 
algorithm is employed. In this integration procedure, the 
values of the integrated expressions, i.e., the values of 

22Fσ ,…, 1Fv  in the Gauss integration nodes, are determined 
according to (40). 
    Under numerical investigation the values of the mechanical 
constants and density of the plate material are taken as 

9
0 1.86 10µ = × Pa, 9

0 3.96 10λ = × Pa, and 0 1160ρ =  kg/m3, 
but the material of the fluid is selected as Glycerin with the 
viscosity coefficient (1) 1,393µ = kg/(m·s), density  

1260ρ = kg/m3,  and the sound speed 0 1459.5a = m/s [10].   
  After selection of the material parameters, the dimensionless 
parameters 1Ω , wN  (35) and M µ (41) can be determined 
through the following quantities: h  (the thickness of the plate-
layer), ω  (the frequency of the time-harmonic external 
forces). In the present work, we will assume that 0.001h = m 
and 5Hz 1000Hzω≤ ≤ , and will investigate only the results 
which relate to the influence of the rheological parameters d  
and Q  of the plate material on the frequency response of 22T , 

2v , and 1v in the case where the rheological parameter α  in 
(44) and (45) is taken as 0.5α = .  In these investigations, the 
values of 22T , 2v , and 1v are calculated on the interface plane 
between the fluid and viscoelastic plate, i.e., at 2x h= −  
(Fig.1). First, we consider the case when 2t nω π=  
( 0,1, 2,...)n = , i.e., the case where cos( ) 1tω =  and 
sin( ) 0tω =  in (62).  
    Thus, we analyze the graphs given in Figs. 2-4 which show 
the influence of the parameter d  (54) on the frequency 
response of 22 0/T h P , 2 0 0 2/ ( )v h P cµ  (where 2 0c µ ρ= ) 
and 1 0 0 2/ ( )v h P cµ , respectively, in the case where 10Q = . 
Under construction of these graphs the values of 22T  and 2v  
are calculated at 1 0x h = , but the values of the velocity 1v  at 

1 25x h = . According to the meaning of the parameter d and 
according to the known mechanical considerations, the 
frequency response graphs under consideration must approach 
to those related to the purely elastic plate case. This prediction 
and mechanical considerations are proven with the results  
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Fig. 2 The influence of the parameter d  (54) on the 
frequency response of the stress 22T  

   
 

 
 
Fig. 3 The influence of the parameter d  (54) on the 
frequency response of the velocity 2v  

 

 
 
Fig. 4 The influence of the parameter d  (54) on the 
frequency response of the velocity 1v  

 
 

 
 
Fig. 5 The influence of the parameter Q  (58) on the 
frequency response of the stress 22T  

 
 
 

 
 
Fig. 6 The influence of the parameter Q  (58) on the 
frequency response of the velocity 2v  

 
 

 
 
Fig. 7 The influence of the parameter Q  (58) on the 
frequency response of the velocity 1v  
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given in Figs. 2-4. Moreover, it follows from these results that 
the absolute values of the studied quantities increase with the 
parameter d .     
    The agreement of the results presented in Figs. 2-4 with the 
mechanical considerations is also a validation of the trustiness 
of the algorithm and PC programs used in the present 
investigation. 
    Consider the results related to the influence of the parameter 
Q  (58) on the frequency response of the studied quantities. 
These results are shown in Figs. 5-7 for 22 0/T h P , 

2 0 0 2/ ( )v h P cµ , and 1 0 0 2/ ( )v h P cµ , respectively. To obtain 
these results, it is assumed that 3d =  and, as above, the values 
of 22T and 2v  are calculated at 1 0x h = , but the values of the 
velocity 1v at 1 25x h = .  
    It follows from these figures that the absolute values of the 
studied quantities increase with the parameter Q , i.e., with the 
dimensionless creep time (58) of the plate material. Moreover, 
these figures show that the results illustrated in that approach 
to a certain limit one with Q . Note that the limit results 
correspond to the purely elastic plate case, the mechanical 
constants of which are determined by (53), i.e., to the purely 
elastic plate with the long-term values of the elastic constants 
determined by (53). This conclusion is also agree with (60) 
and (55). 
    Now we analyze the limit case when 0ω → . According to 
(60) and (55), the above mentioned limit must not depend on 
the values of the parameter Q , but must depend on the values 
of the parameter d . Therefore, the results illustrated in Figs. 
2-4 have various limit values with the decrease in the 
frequency ω  (because the graphs given in these figures are 
constructed for various values of the parameter d ), but the 
results illustrated in Figs. 5-7 have the same limit with the 
decreasing frequency ω  (because the graphs given in these 
figures are constructed for the same value of the parameter 
d =3).  According to (60), (61), and (55)-(57), the mentioned 
limit values with 0ω →  correspond to the purely elastic plate 
case with long-term values of the mechanical constants of the 
plate material. This statement is validated with the results 
given in the foregoing figures. Moreover, from (60), (61), and 
(55)-(57), the limit values of the studied quantities could be 
predicted when ω → ∞ : these limit values must correspond to 
the purely elastic plate case with instantaneous values of the 
elastic constants of the plate material. Consequently, the all 
graphs constructed for various values of the dimensionless 
rheological parameters d  and Q  must approach to each other 
as ω → ∞ . However, within the considered frequency interval, 
i.e., when 5 1000ω≤ ≤ , the differences between the results 
obtained for various values of the rheological parameter Q  
(or d ) increase with the frequency. Moreover, the foregoing 
results show that in the considered range of variation of the 
frequency, the absolute values of the studied quantities 
increase monotonically with frequency. At the same time, 
according to the foregoing results, it can be concluded that the 
viscosity of the plate material causes to decrease of the 

absolute values of stress (or pressure) acting on the interface 
plane and fluid velocities on this plane.   
 

 
 
Fig. 8 The influence of the parameter d  on the 
distribution of 22T  with respect to 1x h   

  
 

 
 
Fig. 9 The influence of the parameter d  on the 
distribution of 2v  with respect to 1x h  

 
    Now we consider the distribution of the studied quantities 
with respect to 1x h . The graphs of these distributions are 
given in Figs. 8-10 for 22 0/T h P , 2 0 0 2/ ( )v h P cµ , and 

1 0 0 2/ ( )v h P cµ , respectively. Note that these curves are 
constructed for various values of the parameter d  at  10Q =  
and 600ω = Hz.  
   It follows from the graphs that the stress 22T  and the velocity 

2v  have its absolute maximum values at 1 0x h = , but the 
velocity 1v at 1 25x h ≈ . Therefore, under construction of the 
foregoing graphs related to the frequency response, the values 
of 22T  and 2v  have been calculated at 1 0x h = , but the values 
of 1v  at 1 25x h = . Moreover, the graphs presented in Figs. 
8-10 show that the values of the studied quantities attenuate 
with distance from the vibration source. This conclusion for 
the velocity 1v  occurs in the cases where 1 25x h ≥ . The 
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influence of the parameter d  on the distribution under 
consideration has monotone character, i.e., the absolute values 
of the stress 22T  and velocities 2v  and 1v  increase 
monotonically with d  for each value of 1x h . 
 

 
 
Fig. 10 The influence of the parameter d  on the 
distribution of 1v  with respect to 1x h  

 

 
 
Fig. 11 The graphs of the dependence between 22T  
and tω  constructed for various values of d   

 
 We recall that the foregoing results are obtained from the 
expressions in (62) in the case where 2t nω π= ( 0,1, 2,...n = ). 
Now we consider numerical results related to the dependencies 

22 0/T h P , 2 0 0 2/ ( )v h P cµ , 1 0 0 2/ ( )v h P cµ  and tω  in the case 
where 0 tω π≤ ≤ . Graphs of these dependencies are given in 
Figs. 11 (for 22T ), 12 (for 2v ), and 13 (for 1v ). These graphs 
are constructed for various values of the parameter d  under 

10Q =  and 600ω = Hz, and the values of 22T  and 2v  are 
calculated at 1 0x h = , but the values of 1v  at 1 25x h = . It 
follows from these graphs that the absolute maximum values of 
the studied quantities arise in the cases where 

0t nω π≠ + ( 0,1, 2,...n = ). In other words, the absolute 
maximum values of studied quantities arise at 

*( )t t nω ω π= +  and the values of *( )tω  can be easily 
determined from Figs. 11-13 for 22T , 2v  and 1v , respectively. 
However, the absolute maximum values of the external loading 
arise, namely, at 0t nω π= + . This means a phase shifting of 
the studied quantities with respect to the external loading. It 
follows from the results that this phase shifting is more 
considerable for the velocities 2v  and 1v than for the stress 

22T . Moreover, the results show that the influence of the 
parameter d  on the values of *( )tω  is insignificant.  
    This completes the consideration of the numerical results. 
The further application of the approach developed here to 
study the viscoelastic plate and compressible viscous fluid 
interaction problems will be carried out by the authors.     
 

 
 
Fig. 12 The graphs of the dependence between 2v  
and tω  constructed for various values of d  

 

 
 
Fig. 13 The graphs of the dependence between 1v  
and tω  constructed for various values of d  
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